A recipe for writing down generators for modular units.

Maarten Derickx¹ Mark van Hoeij²

¹Universiteit Leiden

²Florida State University

ANTS X - grump session

M. Derickx, M. van Hoeij (UL and FSU)

Modular units in $\mathbb{Q}(\overline{X_1(N)})$

Equations for $Y_1(N)$

- $R := \mathbb{Z}[b, c, \frac{1}{\Delta}]$ with $\Delta := -b^3(16b^2 + (8c^2 - 36c + 27)b + (c - 1)c^3)$
- E/R ell. crv given by $Y^2 + cXY + bY = X^3 + bX^2$
- P := (0:0:1)
- Let $\Phi_N, \Psi_N, \Omega_N \in R$ be s.t. $(\Phi_N \Psi_N : \Omega_N : \Psi_N^3) = NP$

The equation $\Psi_N = 0$ sais *P* has order dividing *N*. Define F_N by removing form Ψ_N all factors coming from some Ψ_d with d|N.

•
$$Y_1(N)_{\mathbb{Z}[1/N]} = \operatorname{Spec} R[1/N]/F_N$$

- hence also $\mathbb{Q}(X_1(N)) = \mathbb{Q}(b)[c]/F_N$.
- if $N \neq M$ consider $F_M \in \mathbb{Q}(X_1(N))^*$ then supp div $F_M \subset Cusps$.
- if $N \nmid M$ consider $\Psi_M \in \mathbb{Q}(X_1(N))^*$ then supp div $\Psi_M \subset Cusps$.
- the above means that F_M and Ψ_M are modular unit.

3

Modular units over Q

Define the modular units over ${\mathbb Q}$ as follows.

$$\mathcal{F}_{1}(N) := \{ f \in \mathbb{Q}(X_{1}(N))^{*} | \operatorname{supp} \operatorname{div} f \subset Cusps \} / \mathbb{Q}^{*} \\ \mathcal{F}_{1}'(N) := \langle \Delta, b, F_{4}, \dots, F_{\lfloor N/2 \rfloor + 1} \rangle = \langle \Delta, b, \Psi_{4}, \dots, \Psi_{\lfloor N/2 \rfloor + 1} \rangle \subset \mathcal{F}_{1}(N)$$

- $X_1(N)$ has $\lfloor N/2 \rfloor + 1$ Gal $(Q(\zeta_N)/Q)$ orbits of cusps
- The subgroup C₁(N) ⊂ Pic⁰(X₁(N))(Q(ζ_N)) generated by cuspidal divisors is torsion.
- So $\mathcal{F}_1(N)$ is a lattice of rank $\lfloor N/2 \rfloor$

We verified using computer computations that for all $4 \le N \le 70$.

$$\mathcal{F}_1'(N) = \mathcal{F}_1(N)$$

Is there a theoretical explanation? What are the relation between the F_N and the siegel functions?

M. Derickx, M. van Hoeij (UL and FSU)