Progress report on a Wilson prime search

David Harvey (with Edgar Costa and Robert Gerbicz)

University of New South Wales

10th July 2012, ANTS X, UC San Diego

David Harvey (with Edgar Costa and Robert Gerbicz) Progress report on a Wilson prime search

For prime p, define the Wilson quotient

$$w_p = \frac{(p-1)!+1}{p}.$$

Wilson's theorem:

$$w_p \in \mathbf{Z}$$
.

A Wilson prime is a prime with $w_p = 0 \pmod{p}$. Equival

$$(p-1)! = -1 \pmod{p^2}.$$

Only known Wilson primes: 5, 13, 563.

Crandall–Dilcher–Pomerance (1997): no others for

 $p < 500\,000\,000.$

Carlisle-Crandall-Rodenkirch (2008, unpublished):

 $p < 6\,000\,000\,000.$

Heuristically

$$\#\{ ext{Wilson primes } p < x \} \sim \sum_{p < x} rac{1}{p} \sim \log \log x.$$

This does go to infinity... but very slowly.

Naive:

 $O(p^{1+o(1)})$ bit operations.

Baby-step/giant-step (Strassen):

 $O(p^{1/2+o(1)})$ bit operations.

• New algorithm: compute w_p for all p < N using only

 $O((\log p)^{4+o(1)})$

bit operations per prime on average. Polynomial time!

Current computation

At this moment running on 500–1000 cores at NYU & UNSW.

We have checked all

 $p < 1\,000\,000\,000\,000$

and larger p in some intervals.

Goal:

 $p < 10\,000\,000\,000\,000.$

About 8% chance of success for $10^{12} .$

p	Wp	
		(largest known p with $ w_p =1$) (smallest known nonzero $ w_p/p $)
Table: Some close calls		

Our new exascale machine arrived about 7 weeks ago:

Jesse Oliver Harvey