Factoring 1024-bit RSA

Nadia Heninger
Zakir Durumeric Eric Wustrow Alex Halderman

RSA-768: December 12, 2009 Kleinjung et al. 2 years

RSA-768 : December 12, 2009 Kleinjung et al. 2 years

RSA-704: July 2, 2012 Bai et al. 1 year

RSA-768 : December 12, 2009 Kleinjung et al. 2 years

RSA-704 : July 2, 2012 Bai et al. 1 year

Our running time:

1024-bit RSA modulus:

1.5 hours (\$5 of EC2 compute time)

RSA-768: December 12, 2009 Kleinjung et al. 2 years

RSA-704: July 2, 2012 Bai et al. 1 year

Our running time:

198 **512-bit** 11 **768-bit** 16477 **1024-bit** 29 **2048-bit RSA moduli**

1.5 hours (\$5 of EC2 compute time)

Algorithm

- 1. Collect RSA moduli.
- 2. Calculate $gcd(N_i, N_j)$ for all (i, j).

Obtaining RSA moduli

Scanned IPv4 space for TLS certificates, SSH host keys.

Obtained 11,170,883 distinct moduli.

Implementation

 $\begin{array}{c|cccc}
N_1 & N_2 & N_3 & N_4 \\
& & & & \\
\times & & & \times \\
& & & & \\
\end{array}$ product tree 40 lines of Sage. Too unstable. :(350 lines of C. More stable. :)

Bernstein, D. J. "How to find the smooth parts of integers"

Implementation

40 lines of Sage. Too unstable. :(

350 lines of C. More stable. :)

16,717 keys factored.

Bernstein, D. J. "How to find the smooth parts of integers"

